Discrete and Embedded Eigenvalues for One-dimensional Schrödinger Operators

نویسنده

  • CHRISTIAN REMLING
چکیده

I present an example of a discrete Schrödinger operator that shows that it is possible to have embedded singular spectrum and, at the same time, discrete eigenvalues that approach the edges of the essential spectrum (much) faster than exponentially. This settles a conjecture of Simon (in the negative). The potential is of von Neumann-Wigner type, with careful navigation around a previously identified borderline situation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bound States of Discrete Schrödinger Operators with Super-critical Inverse Square Potentials

We consider discrete one-dimensional Schrödinger operators whose potentials decay asymptotically like an inverse square. In the super-critical case, where there are infinitely many discrete eigenvalues, we compute precise asymptotics of the number of eigenvalues below a given energy E as this energy tends to the bottom of the essential spectrum.

متن کامل

Eigenvalue Spacings and Dynamical Upper Bounds for Discrete One-Dimensional Schrödinger Operators

We prove dynamical upper bounds for discrete one-dimensional Schrödinger operators in terms of various spacing properties of the eigenvalues of finite volume approximations. We demonstrate the applicability of our approach by a study of the Fibonacci Hamiltonian.

متن کامل

Note on the spectrum of discrete Schrödinger operators

The spectrum of discrete Schrödinger operator L + V on the d-dimensional lattice is considered, where L denotes the discrete Laplacian and V a delta function with mass at a single point. Eigenvalues of L+V are specified and the absence of singular continuous spectrum is proven. In particular it is shown that an embedded eigenvalue does appear for d ≥ 5 but does not for 1 ≤ d ≤ 4.

متن کامل

A weak Gordon type condition for absence of eigenvalues of one-dimensional Schrödinger operators

We study one-dimensional Schrödinger operators with complex measures as potentials and present an improved criterion for absence of eigenvalues which involves a weak local periodicity condition. The criterion leads to sharp quantitative bounds on the eigenvalues. We apply our result to quasiperiodic measures as potentials. MSC2010: 34L15, 34L40, 81Q10, 81Q12

متن کامل

The spectrum of non-local discrete Schrödinger operators with a δ-potential

The behaviour of the spectral edges (embedded eigenvalues and resonances) is discussed at the two ends of the continuous spectrum of non-local discrete Schrödinger operators with a δ-potential. These operators arise by replacing the discrete Laplacian by a strictly increasing C1-function of the discrete Laplacian. The dependence of the results on this function and the lattice dimension are expl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006